NO_x AND SO₂ ADSORPTION ON CARBON Aurora M. Rubel and John M. Stencel Center for Applied Energy Research University of Kentucky Lexington, KY 40511-8433, USA Keywords: NO_x, SO₂, adsorption, carbon #### INTRODUCTION The need to control NO_x emissions from fossil fuel power plants has lead to the development of commercially proven technologies, the best known being selective catalytic reduction (SCR)¹⁻³. Because NO_x concentrations are generally at near trace levels and less than 0.3%⁴, a number of other potentially more efficient control measures have and are being investigated. One such measure includes the use of adsorbents such as metal oxides³⁶, ion-exchanged zeolites⁷, activated carbon fibers with and without modifiers⁸⁻¹⁰, and activated carbons¹¹⁻¹⁵. J Activated carbons can be used effectively for SCR and for the oxidation of SO_2 to SO_3 with the subsequent formation of $H_2SO_4^{16-19}$. The uptake of SO_2 by carbons in the absence of NO_4 has been studied extensively $^{20-26}$. Moisture $^{20-22}$, O_2 content $^{22-23}$, and temperature 24 influence greatly the amount of SO_2 adsorbed onto activated carbons, although agreement is lacking on the synergistic or detrimental effects of co-adsorbed O_2 and H_2O^{22-23} . It has been suggested that two different sites on the carbon are involved in SO_2 adsorption and oxidation 26 , and that two different SO_2 species are present on the carbon during and after adsorption $^{22-23}$. NO adsorption onto activated carbons over a temperature range of $20\text{-}120^{\circ}\text{C}$ and in the absence of SO_2 have been reported ^{11-15, 27-29}. Without O_2 a carbon's NO uptake capacities and adsorption kinetics were low^{27, 28} in comparison to when O_2 was present as a co-adsorbate¹¹⁻¹³. These data have shown that the adsorption of NO from a simulated flue gas containing O_2 , CO_2 , and H_2 O involved the catalytic conversion of $NO + \frac{1}{2}$ $O_2 \rightarrow NO_2$ at active site(s) on the carbon¹¹⁻¹³ leading to NO_2 adsorption capacities as high as 200 mg NO_2 (g carbon)⁻¹. No published work has been found which details adsorption capacities and kinetics during the co-adsorption of NO and SO_2 over activated carbons or other porous materials. However, an understanding of the effects of such co-adsorption NO_2 . Hence, this work was performed to elucidate interactions between NO_2 and SO_2 in and over activated carbons during adsorption and desorption cycling. ## **EXPERIMENTAL** Instrumentation. NO₂/SO₂ adsorption/desorption profiles were obtained using a Seiko TG/DTA 320 coupled to a VG Micromass PC quadrupole mass spectrometer (MS). A heated (170°C) fused silica capillary was used to transfer an aliquot of the atmosphere above the sample pan in the thermogravimetric analyzer (TG) to an inert metrasil molecular leak which interfaced the capillary with the enclosed ion source of the MS. Both instruments were controlled by computers which also provided for programmable control of the furnace, continuous weight measurements, sweep gas valve switching, data acquisition and analysis, review of MS scans and export of data to other computers. The MS has a Nier type enclosed ion source, a triple mass filter, and two detectors (a Faraday cup and a secondary emissions multiplier). TG-MS procedures. The TG sample pan was loaded with a constant activated carbon volume weighing approximately 20-30 mg. The sweep gas flow rate through the TG was held constant at 200 ml m⁻¹ metered at room temperature and pressure. The heating regime of the furnace incorporated segments in the following order for pre-conditioning, cooling, adsorption, reversible desorption, and temperature-induced (irreversible) desorption. Explanations of each step and example programs have been previously published ^{11,13}. For this study, the pre-conditioning and irreversible desorption heating rate, adsorption time interval, reversible desorption time, and the maximum desorption temperature were 20 °C m⁻¹, 60 m, 30 m, and 350 ° C respectively. A He gas sweep was used during pre-conditioning, and reversible and irreversible desorptions. Pre-conditioned carbon was exposed to simulated flue gas only during the adsorption step. Multiple and consecutive adsorption/desorption cycles could be performed by recycling the furnace temperature program. The MS was used to continuously monitor gases during an experiment. Spectral scans were acquired over a 1-100 a.m.u. range with a total measurement interval of approximately 30 s per 100 a.m.u. Mass ion identification, analytical procedures, and materials. The identification of desorbed gases detected by the MS was done by using the major mass ions, 64, 44, 32, and 18, for SO₂, CO₂, O₃, and H₂O respectively. The major mass ion for both NO and NO₂ is 30. The relative abundance of a.m.u. 46 for NO₂ gas is approximately 40 percent, but in mixtures of gases, this value can change. Therefore, NO and NO₂ were identified by comparing the mass ion ratio, 30/46, during desorption with ratios determined using mixtures of NO or NO₂ and all combinations of gases used during our study. A carbon, commercially produced by physical activation with steam, was used. The carbon had N_2 BET total, meso- and micropore surface areas and pore volumes of 460, 20, and 440 m² g⁻¹ and 0.69, 0.45, and 0.24 ml g⁻¹ respectively. The chemical and physical properties of this carbon, identified as carbon, a, in a previous publication, has been described in detail¹⁵. Carbon pre-conditioned under a flow of He or SO₂ was used. Three simulated flue gas mixtures were used during this study. The concentrations of O₂, CO₂, and H₂O were held constant at 5%, 15%, and 0.4-0.6% respectively. The NO and SO₂ composition of the three mixtures were varied as follows: 1% NO with 0% SO₂, 1% NO with 0.025% SO₂, and 0% NO with 0.025% SO₂. He was used as the balance gas. The primary variable studied was the simulated flue gas composition at an adsorption temperature of 70°C. ## RESULTS AND DISCUSSION Adsorption/desorption profiles shown in Figure 1 were generated during each TG/MS experiment. The weight gained, weight lost and an identification of the desorbed gas species were determined using these profiles. Figure 1 shows a profile for the co-adsorption of NO₂ and SO₂ at 70°C. Carbon pre-conditioning is performed up to point a. The weight gained upon exposure of the carbon to the simulated flue gas (points a-to-b) was attributed to the adsorption of gas components. Weight lost at the adsorption temperature after switching from the simulated flue gas to He (points b-to-c) was attributed to "reversibly adsorbed" species. Weight lost as a consequence of increasing the temperature of the carbon (points c-to-d, and beyond), i.e. during temperature programmed desorption (TPD), was attributed to two "irreversibly adsorbed" species which evolved at different temperatures. They were identified by MS as NO₂ and SO₂ and were the only evolved gas species detected. Upon reaching the maximum desorption temperature, the carbon weight returned to the pre-adsorption starting weight. Weight gain curves during exposure of the activated carbon to the three different flue gas mixtures are presented in Figure 2. The total uptake decreased from 143 mg (g carbon)⁻¹ -to- 129 mg (g carbon)⁻¹ when SO₂ was a constituent in the gas. Pre-saturating the carbon with SO₂ prior to exposure to gases containing both NO and SO₂ decreased further the total uptake to 109 mg (g carbon)⁻¹. In the presence of SO₂ only (no NO), the uptake was only 24 mg (g carbon)⁻¹. The desorption weight loss curves, presented in Figure 3, were defined with respect to reversible and irreversible (TPD) components. Reversible desorption accounted for 18%, 36% and 58% of the total uptake for gases containing both NO and SO₂. NO alone, or SO₂ alone, respectively. Figure 4 shows the DTG curves acquired during TPD and Figure 5 gives the desorption weights which could be attributed to specific evolved gases by MS. For simulated flue gas containing NO and SO₂, two irreversibly adsorbed species desorbed from the carbon and were identified to be NO₂ and SO₂. The temperature of maximum evolution was 145°C for NO₂ and 319°C for SO₂ (also see Figure 1). The adsorption of NO₂ in the absence of SO₂ also gave two irreversibly adsorbed species, having temperatures of maximum evolution at 144°C and 352°C. These two irreversible components were identified as NO₂ and CO₂ respectively. Only one irreversibly adsorbed species, identified as SO₂, was desorbed from the carbon after exposure to gas containing SO₂ (no NO). The maximum evolution of this SO₂ occurred at 302°C. When SO₂ was present, the amount of irreversibly adsorbed NO₂ decreased to 68 mg (g carbon)⁻¹ from 87 mg(g carbon)⁻¹ when SO₂ was not present (Figure 5). The amount of irreversible NO₂ species further decreased to 59 mg (g carbon)⁻¹ when the carbon was pre-saturated with SO₂. However, the amount of irreversibly bound SO₂ was doubled when SO₂ was adsorbed in the presence of NO in comparison to when SO₂ was adsorbed by itself. This enhancement suggests that there is synergistic interaction between NO₂ and SO₂ during adsorption onto the carbon. Another observation was the fact that carbon pre-saturated with SO₂ and then exposed to the NO + SO₂ - containing flue gas (compare Figures 2 and 5) adsorbed more SO₂ than without the pre-saturation. Additionally, the temperature of desorption for the irreversibly adsorbed SO₂ species was increased from 300°C (in the case of SO₂ adsorption without NO) to 320°C when SO₂ and NO₂ are co-desorbed. We have previously postulated that NO_2 adsorption involved the catalytic conversion of $NO + \frac{1}{2}O_2$ $\rightarrow NO_2$ at an active site(s) on the carbon and that NO_2 then condenses within the micropores of the carbon¹³. It is possible that active sites are created during the co-adsorption of NO_2 and SO_2 that are not created during the adsorption of SO_2 by itself, or the presence of NO_2 on the surface may assist the oxidation of $SO_2 \rightarrow SO_3$ on the carbon which enhanced the uptake of SO_2 . Relative to the effects of SO_2 on the uptake capacity of NO_2 , it may bind to or interfere with the sites involved in the catalytic conversion of NO-to- NO_2 , thereby resulting in lower NO_2 adsorption. 1:1 The temperature of maximum evolution of NO₂ was not altered by the presence of SO₂, indicating that the mechanism of condensation of NO₂ within the micropores was not affected by SO₂ surface species. Because condensation of NO₂ within the micropores would be strongly dependent on van der Waal forces^{5,10,12}, and because SO₂ and NO₂ have similar van der Waal force constants, it is possible that adsorbed SO₂ would not affect the NO₂ storage mechanism. However, SO₂ has a critical volume 1.5 times that of NO₂ and has stronger bonding to the carbon. Both of these factors would suggest that the adsorbed SO₂ species may concentrate at pore mouths, a location which would limit NO₂ condensation. The slower rate of reversible desorption when NO₂ + SO₂ are co-adsorbed (Figure 3) in comparison to adsorption of NO₂ alone may also reflect a physical impediment related to SO₂; for instance SO₂ bound to active sites could limit or block the access of NO₂ to the micropores, thereby affecting not only the storage capacity but also the rate of adsorption/desorption. In fact, the maximum adsorption rate and the desorption rate for the irreversibly adsorbed NO_2 species were decreased by the co-adsorption of SO_2 (Figure 6). Good correlations ($r^2=1.00$) were obtained for the decline in the maximum adsorption rate (second order) and desorption rate (first order) versus the amount of SO_2 adsorbed. We have previously reported that the NO_2 adsorption capacity of different carbons was dependent on the maximum adsorption rate of NO_2 , but that the desorption rate of the irreversibly adsorbed NO_2 species was the same for all carbons¹⁵. For the current study, the amount of NO_2 stored in the carbon versus the maximum adsorption rate, as influenced by SO_2 , resulted in a good second order correlation, $r^2=0.995$ (Figure 7). ### SUMMARY AND CONCLUSION During the co-adsorption of NO_2 and SO_2 from a simulated flue gas, less NO_2 and substantially more SO_2 was adsorbed in comparison to when either oxide was adsorbed by itself. The adsorption mechanism for NO_2 remained unchanged in the presence or absence of SO_2 . When NO_2 and SO_2 were co-adsorbed, a synergism improved the capacity of the carbon for SO_2 uptake. The presence of adsorbed SO_2 in the carbon significantly decreased the rate of adsorption and the rates of both reversible and irreversible desorption of NO_2 , indicating the possibility of a physical impediment created by the adsorbed SO_2 . ### REFERENCES - 1. Bosch, H. and Janssen, F. Catal. Today 1988, 2, 369 - Grzybek, T. and Papp, H. Appl. Catal. B. Environ. 1992, 1, 271 - 3. Radtke, F., Koeppel, R.A., and Baiker, A. Appl. Catal. A 1994, 107, L125 - 4. Ritter, J.A. and Yang, R.T. Ind. Eng. Chem. Res. 1990, 29, 1023 - 5. Arai H. and Machida M., Catalysis Today 1994, 22, 97 - Stiles, A. B., Klein, M.T., Gauthier, P., Schwarz, S., and Wang, J. Ind. Eng. Chem. Res. 1994 33, 2260 - 7. Zhang, W., Yahiro, H., Mizuno, N., Izumi, J., and Iwamoto, M., Langmuir 1993, 9, 2337 - 8. Kaneko, K., Shindo, N. Carbon 1989, 27, 815 - 9. Knoblauch, K., Richter, E. and Juntgen, H. Fuel 1981, 60, 832 - 10. Kaneko, K., Nakahigashi, Y. and Nagata, K. Carbon 1988, 26, 327 - 11. Rubel, A.M., Stencel, J.M., and Ahmed, S.N. Preprints Symposium on Flue Gas Cleanup Processes 1993, ACS, Division of Fuel Chem., Denver, CO meeting, 726. - 12. Rubel, A.M., Stencel, J.M., and Ahmed, S.N. Proceeding of the AIChE 1993 Summer National Meeting 1993, Seattle, WA,, paper no. 77b. - 13. Rubel, A.M., Stewart, M.L. and Stencel, J.M. JMR 1994, 10, 562. - 14. Rubel, A.M. and Stencel, J.M. Energy and Fuel, in press - 15. Rubel, A.M., Stewart M.L., and Stencel, J.M. In *Reduction of Nitrogen Oxide Emissions, ACS Symposium Series* 587, Ozkan, U.S., Agarwal, S.K., and Marcelin, G. eds., ACS, Washington, D.C. 1995, 208 - 16. Cha, C.Y. Res. Chem. Imtermed. 1994, 20, 13 - 17. Gangwal, S.K., Howe, G.B., Spivey, J.J., Silveston, P.L., Hudgins, R.R., and Metzinger, J.G. Environ. Prog. 1993, 12, 128 - 18. Ahmed, S.N., Stencel, J.M., Derbyshire, F.J., Baldwin, R.M. Fuel Proc. Tech. 1993, 34, 123 - 19. Ahmed, S.N., Baldwin, R.M., Derbyshire, F.J., McEnaney, B., and Stencel, J.M. Fuel 1993, 72, 287 - 20. Zawadzki, J. Carbon 1987, 25, 43 - 21. Zawadzki, J. Carbon 1987, 25, 495 - 22. Tartarelli, R., Davini, P., Morelli, F., and Corsi, P. Atmosph. Environ. 1978, 12, 289 - 23. Davini, P. Carbon 1991, 28, 565 - 24. Davini, P. Carbon 1991, 29, 321 - Carrasco-Marin, F., Uterra-Hidalgo, E., Rivera-Utrilla, J., Moreno-Castilla, C. Fuel, 1992, 71, 575 - 26. Mochida, I., Hirayama, T., Kisamori, S., Kawano, S., and Fujitsu, H. Langmuir 1992, 8, 2290 - 27. Teng, H. And Suuberg, E.M. J. Phys. Chem. 1993, 97,478 - 28. DeGroot, W.F., T.H. Osterheld, G.N. Richards. Carbon 1991, 29,185 - 29. Richter, E., R. Kleinschmidt, E. Pilarczyk, K. Knoblauch, and H. Juntgen. *Thermochimica Acta* 1985, **85**,311 Figure 1. Adsorption-desorption profile from TG-MS for adsorption of NO₂ and SO₂ at 70°C. Figure 2. Weight gain curves during adsorption. Figure 3. Weight loss curves during TPD. Figure 4. DTG curves during irreversible desorption. 1 Figure 5. Evolved gases during irreversible desorption. Figure 6. Influence of adsorbed SO₂ on adsorption and desorption rates. Figure 7. Correlation between NO_x adsorption capacity and total adsorption rate.